परिणामित्र (Transformer) प्रयुक्त विद्युत् के क्षेत्र में संभवत: सर्वाधिक व्यापक रूप से उपयोग में आनेवाला वैद्युत साषित्र (appliance) है। उद्योगों में दिष्ट धारा की अपेक्षा प्रत्यावर्ती धारा को जो प्रमुखता है उसका सारा श्रेय केवल परिणामित्र को है। यह ऐसा साधित्र है जो निम्नवोल्टता की उच्च धारा को उच्च वोल्टता की निम्न धारा में और उच्च वोल्टता की निम्नधारा को निम्नवोल्टता की उच्च धारा में परिणामित करता है। यह परिणामन ऊर्जा की न्यूनतम हानि से और साधित्र में बिना किसी गतिमान भाग की सहायता के संपन्न हो जाता है। १०० वोल्ट की १०,००० वाट विद्युच्छक्ति के परिणमन के लिए १०० ऐंपियर धारा आवश्यक होती है। पर १०,००० की वोल्टता पर केवल एक ऐंपियर धारा पर्याप्त होती है। अत: दूसरी स्थिति में पहली की अपेक्षा बहुत ही कम व्यासवाला और इस कारण सस्ता चालक आवश्यक होता है।
परिणामित्र का कार्यसंचालन माइकेल फैरेडे की एक अद्वितीय खोज (१८३१ ई.) पर आधारित है, जिसके अनुसार परिपथ में प्रेरित विद्युद्वाहक बल (e.m.f.), परिपथ द्वारा परिबद्ध क्षेत्र के आरपार चुंबकीय फ्लक्स (flux) के परिवर्तन की समय दर के ऋण के बराबर होता है। सरलतम रूप में परिणामित्र में दो अलग अलग कुंडलियाँ (windings) होती हैं, जिनका चुंबकीय परिपथ एक ही होता है। नीचे चित्र में परिणामित्र की मूल रचना का व्यवस्थाचित्र प्रस्तुत है।
शक्ति के प्रवाह की दिशा के अनुसार परिणामित्र के कुंडलनों का अभिनिर्धारण किया जाता है। प्राथमिक कुंडली को प्रत्यावर्ती विद्युदूर्जा के स्त्रोत से जोड़ते हैं और द्वितीयक को लोड (load) से। विद्युच्चुंबकीय प्रेरण द्वारा ऊर्जा प्राथमिक कुंडली से द्वितीयक कुंडलन में स्थानांतरित होती है। आदर्श परिणामित्र के क्रियासंचालन् की विशेषताएँ हैं :
- (१) कुडली में प्रतिरोध का न होना,
- (२) क्षरण फ्लक्स का न होना,
- (३) शैथिल्य (hysterisis) हानि का न होना और
- (४) भँवर धारा में हानि का न होना।
व्यवहारत: यह आदर्श स्थिति दुष्प्राप्य है।
परिणामित्र की प्राथमिक कुंडली से जुड़ी संभरण वोल्टता चुंबकीय फ्लक्स उत्पन्न करती है, जो परिणामित्र के पटलित (laminated) क्रोड से संबद्ध होती है। परिणामित्र के प्राथमिक कुंडली से जुड़ी हुई प्रत्यावर्ती वोल्टता Ep को उच्चतम चुंबकीय फ्लक्स के घनत्व Bm, पटलित क्रोड की अनुप्रस्थ काट का क्षेत्रफल A, प्रत्यावर्ती धारा की आवृर्ती धारा की आवृत्ति f तथा प्राथमिक कुंडली में लपेटों को संख्या N1 के पदों में व्यक्त किया जाता है:
- Ep = 4.44 f N1 A Bm
प्राथमिक कुंडली में प्रवाहित धारा द्वारा उत्पन्न प्रत्यावर्ती चुंबकीय फ्लक्स द्वितीयक कुंडली की लपेटों को भी संबद्ध करता है। प्राथमिक और द्वितीयक कुंडलियों में अंतर केवल लपेटों की संख्या का होता है, अत: द्वितीयक कुंडली में प्रेरित वोल्टता का प्रभावी मान
- Es=4.44 f N2 A Bm
इस प्रकार प्राथमिक और द्वितीयक वोल्टता का निम्नलिखित अनुपात प्राप्त होता है:
- Ep/Es = N1/N2
प्राथमिक कुंडली की वोल्टता को बढ़ाने के आवश्यकता पड़ने पर प्राथमिक कुंडली में लपेटों की सख्या N1 को द्वितीयक कुंडली की लपेटों की संख्या N2 से कम रखा जाता है। इस प्रकार के परिणामित्र को उच्चायी (step up) परिणामित्र कहते हैं और प्राथमिक कुंडली की वोल्टता यदि द्वितीयक की वोल्टता से अधिक है तो प्राथमिक कुंडली में लपेटों की संख्या N1 द्वितीयक कुंडली की लपेटों की संख्या N2 से बड़ी होगी। इस प्रकार के परिणामित्र को अपचायी (step down) परिणामित्र कहते हैं।
सामान्यत: परिणामित्र का स्वरूप निम्नलिखित बातों से निर्धारित होता है:
(अ) वोल्टता मूल्यांकन (Voltage ratings) - परिणामित्र की वोल्टता का मूल्यांकन उच्च और निम्न वोल्टताओं के अनुपात के रूप में व्यक्त किया जाता है, जैसे २३००/२३० वोल्ट। उच्च और निम्न वोल्टता लपेटों में से किसी को भी प्राथमिक कुंडली के रूप में उपयोग में ला सकते हैं।
(ब) किलोवोल्ट ऐंपीयर मूल्यांकन - परिणामित्र के लिए धाराओं का मूल्यांकन प्राय: नहीं किया जाता, पर इसकी गणना किलोवोल्ट ऐंपीयर मूल्यांकन से की जा सकती है।
(स) आवृत्ति मूल्यांकन
(द) तापवृद्धि - औद्योगिक निर्माताओं द्वारा निर्मित परिणामित्रों में कुछ वर्णसंकेतों (colour codes) की व्यवस्था होती है, जिनसे निम्न वोल्टता, उच्च वोल्टता और केंद्र-टैप-लोड के निर्धारण में मदद मिलती है। परिणामित्र को किसी विशिष्ट परिपथ से जोड़ने के पूर्व इनका निर्धारण करना पड़ता है।
Post a Comment